Phase transition in the spanning-hyperforest model on complete hypergraphs
نویسندگان
چکیده
By using our novel Grassmann formulation we study the phase transition of the spanning-hyperforest model of the k-uniform complete hypergraph for any k ≥ 2. The case k = 2 reduces to the spanning-forest model on the complete graph. Different k are studied at once by using a microcanonical ensemble in which the number of hyperforests is fixed. The low-temperature phase is characterized by the appearance of a giant hyperforest. The phase transition occurs when the number of hyperforests is a fraction (k − 1)/k of the total number of vertices. The behaviour at criticality is also studied by means of the coalescence of two saddle points. As the Grassmann formulation exhibits a global supersymmetry we show that the phase transition is second order and is associated to supersymmetry breaking and we explore the pure thermodynamical phase at low temperature by introducing an explicit breaking field. 1 ar X iv :0 90 6. 45 03 v1 [ co nd -m at .s ta tm ec h] 2 4 Ju n 20 09
منابع مشابه
Critical Random Hypergraphs: the Emergence of a Giant Set of Identifiable Vertices
We consider a model for random hypergraphs with identifiability, an analogue of connectedness. This model has a phase transition in the proportion of identifiable vertices when the underlying random graph becomes critical. The phase transition takes various forms, depending on the values of the parameters controlling the different types of hyperedges. It may be continuous as in a random graph (...
متن کاملTransition in Iran’s Electricity Market Considering the Policies on Elimination of Electricity Subsidies: System Dynamics Application
Because of electricity subsidies, electricity price in Iran is much lower than its real value, and the growth of electricity demand is much more than its rational rate, which in turn implies ever increasing investment in the electricity section by the Government. Therefore, the recent Government policies are based on elimination of electricity subsidies, followed by commissioning complete elect...
متن کاملCovering complete partite hypergraphs by monochromatic components
A well-known special case of a conjecture attributed to Ryser (actually appeared in the thesis of Henderson [7]) states that k-partite intersecting hypergraphs have transversals of at most k−1 vertices. An equivalent form of the conjecture in terms of coloring of complete graphs is formulated in [1]: if the edges of a complete graph K are colored with k colors then the vertex set of K can be co...
متن کاملDirected domination in oriented hypergraphs
ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...
متن کاملCATEGORY OF (POM)L-FUZZY GRAPHS AND HYPERGRAPHS
In this note by considering a complete lattice L, we define thenotion of an L-Fuzzy hyperrelation on a given non-empty set X. Then wedefine the concepts of (POM)L-Fuzzy graph, hypergraph and subhypergroupand obtain some related results. In particular we construct the categories ofthe above mentioned notions, and give a (full and faithful) functor form thecategory of (POM)L-Fuzzy subhypergroups ...
متن کامل